GRAPHENE IN CEMENT: SOLVING REAL-WORLD CHALLENGES

info@riiigroup.com |instrumentri@gmail.comwww.riiigroup.comwww.rinanotech.com

GRAPHENE IN CEMENT – THE WORLD SCENARIO

- CEMENT CONTRIBUTES ~8% OF GLOBAL CO2 EMISSIONS.
- DURABILITY AND EARLY-STAGE CRACKING ARE MAJOR CHALLENGES.
- GRAPHENE ADOPTION GROWING IN RESEARCH BUT NOT YET AT MASS SCALE.
- INDUSTRY DEMANDS SCALABLE, COST-EFFECTIVE NANOMATERIAL INTEGRATION.
- Gap: Bridging Lab Innovation and Site Implementation.

WHY GRAPHENE IS A GAME-CHANGER FOR CEMENT

- HIGHEST MECHANICAL STRENGTH MATERIAL KNOWN (~1 TPA YOUNG'S MODULUS).
- EXCELLENT WATER BARRIER PROPERTIES DUE TO LAYERED STRUCTURE.
- ACTS AS NANO-REINFORCEMENT WITHIN C-S-H MATRIX.
- ACCELERATES CEMENT HYDRATION BY ACTING AS A NUCLEATION SITE.
- OFFERS SUSTAINABILITY ADVANTAGES BY REDUCING CLINKER DEMAND.

SCIENTIFIC & ENGINEERING BENEFITS

- CRACK REDUCTION: UP TO 40% FEWER MICROCRACKS, BETTER TENSILE STRENGTH.
- WATER RESISTANCE: 28–40% LOWER WATER PERMEABILITY, CHLORIDE RESISTANCE.
- FASTER CURING: 20–35% FASTER SETTING DUE TO NUCLEATION ACCELERATION.
- ✓ CO₂ REDUCTION: 10–15% CLINKER REDUCTION POSSIBLE PER MIX.
- CUSTOM FORMULATIONS: EFFECTIVE IN VARIED REGIONAL MIX DESIGNS.

- Mass-scale graphene derivatives for cement enhancement.
- OVER 5 TONS/MONTH PRODUCTION CAPABILITY ESTABLISHED.
- FORMULATED TO BLEND WITH OPC, PPC, GEOPOLYMER, LIME CEMENT.
- CUSTOMIZED SURFACE-TREATED GRAPHENE FOR DISPERSION STABILITY.
- 10x cost advantage compared to conventional lab graphene.

RI GROUP'S SCALABLE GRAPHENE SOLUTION

USE CASES ACROSS INDUSTRY

- Infrastructure: Bridges, tunnels, highways.
- PRECAST: TILES, PAVERS, READY-MIX BLOCKS.
- MARINE: COASTAL PROTECTION, PORT SLABS, SHIPYARDS.
- MOUSING: LOW-COST DURABLE CONSTRUCTION.
- GREEN BUILDING: LOWER CARBON CERTIFICATION POTENTIAL (LEED, IGBC).

EXAMPLE RESULTS (CERTIFIED)- TESTED AT THE CUSTOMER SITE

Graphene derivative based formulation for M 30 Concrete with cement reduction- with plasticiser

- Enhanced strength with 24% reduction in cement.
- Formulation with <0.001 wt% Graphene derivative used.
- 7th day compressive strength with Graphene based additive is 20% greater than 14th day of normal concrete.
- 37% increase in 28th day compressive strength with Graphene.
- · Slump and workability was within the acceptable limits.

PART 1: CONSTRUCTION CHALLENGES VS. GRAPHENE-ENABLED SOLUTIONS

Construction Industry Challenge	Graphene-Enabled Solution	Impact/Outcome
High Cement Consumption	Graphene-enhanced concrete allows for up to 30% reduction in cement usage without compromising strength	Lower material costs; reduced structural load
Limited Use of Industrial By- products	Improved binding properties enable incorporation of fly ash, construction debris, and industrial sludges	Waste reduction; cost savings on raw materials
Extended Construction Timelines	Accelerated curing times due to graphene's properties	Faster project completion; labor cost savings
Durability and Maintenance Issues	Enhanced tensile and compressive strength, increased resistance to environmental factors	* Longer-lasting structures; reduced maintenance costs
Carbon Emission Regulations	Up to 40% reduction in CO ₂ emissions; eligibility for carbon credits	 Compliance with regulations; potential revenue from carbon credits

PART 2: STRATEGIC BENEFITS FOR CONSTRUCTION PROJECTS

- Cost Efficiency
- •Material Savings: Reduced cement usage leads to significant cost reductions.
- •Waste Utilization: Incorporation of industrial by-products lowers raw material expenses.
- Enhanced Project Timelines
- •Faster Curing: Accelerated setting times shorten construction schedules.
- •Labor Optimization: Reduced labor hours due to quicker project turnaround.
- Sustainability and Compliance
- •Lower Carbon Footprint: Significant CO₂ emission reductions align with green building standards.
- •Carbon Credits: Potential to earn carbon credits, adding a revenue stream.
 - Improved Structural Integrity
- •Durability: Enhanced strength and resistance to environmental stressors extend the lifespan of structures.
- •Maintenance Reduction: Decreased need for repairs and maintenance over time.

Carbon Credit Opportunity

- •Average 1 ton of cement emits ~0.9 ton CO₂
- •Graphene-enhanced cement can cut this by ~0.35 ton
- •1 Carbon Credit \approx 1 ton CO₂ avoided = \$25
- •If producing 1 million tons annually:
 - You save ~350,000 carbon credits
 - Potential carbon revenue: \$8.75 million/year

"RI GROUP'S GRAPHENE INTEGRATION DOESN'T JUST ENHANCE CEMENT

IT TURNS A LIABILITY INTO AN ASSET BY CREATING STRONG, GREEN CEMENT READY FOR TOMORROW'S ECONOMY."

JOIN THE FUTURE OF CONSTRUCTION MATERIALS

PARTNER WITH RIGROUP TO COMMERCIALIZE GRAPHENE-BASED CEMENT.

- CONTACT US FOR PILOT SAMPLES, TECH SHEETS, OR BULK ORDERS.
- INFO@RIIIGROUP.COM | INSTRUMENTRI@GMAIL.COM
- WWW.RIIIGROUP.COMWWW.RINANOTECH.COM

